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ABSTRACT 

Several classes of henselian valued fields admit quantifier elimination rel- 

ative to structures which reflect the additive and multiplicative congru- 

ences of the field. Value groups and residue fields may be viewed as 
reducts of these structures. A general theorem is given using the the- 
ory of tame extensions of henselian fields. Special cases like the case of 
p-adically closed fields and the case of henselian fields of residue charac- 
teristic 0 axe discussed. 

I n t r o d u c t i o n  

In  this paper,  we will consider the following problem: 

Given two valued fields L = (L, v) and F = (F, v) with a common subfield 

K = (K,  v), find a criterion for L and F to be elementarily equivalent over K .  

Here, we use the following terminology: given a first order language s and  

s  S, $1, $2 where $ is a common subs t ruc ture  of S1 and $2 with 

universe S, then  we will say tha t  S1 and $2 are e lementar i ly  equivalent over 
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S if they are elementarily equivalent as s  It will be denoted by 

S1 - s  $2. 

The problem as stated above plays a key role for the question whether a given 

elementary theory 7- of valued fields admits quantifier elimination. It is well 

known that quantifier elimination is equivalent to substructure completeness 

which means that every two models of 7- are equivalent over every common 

substructure. This is a stronger condition than model completeness which re- 

quires only that  every two models are elementary equivalent over every common 

submodel. However, model completeness for elementary theories of valued fields 

can only be obtained if the corresponding theories of value groups and residue 

fields are model complete. The most prominent examples for such theories are 

- the theory of algebraically closed valued fields (cf. [ROB]) 

- the theory of (formally) p-adically closed fields of fixed p-rank (cf. [P-R]). 

At the same time, the second example has shown that quantifier elimination 

for the theory of value groups and for the theory of residue fields is not sufficient 

to guarantee quantifier elimination for such theories of p-adically closed fields. 

The same obstruction is found for other theories of valued fields too, with the 

exception of algebraically closed valued fields. Some more structure is needed, 

and in the case of the p-adics it was found by Macintyre [M]. Using Macintyre's 

n - t h  power predicates P,~ for every n C N (where Pn(x) r 3y: yn = x), the 

comprehensive theorem for p-adically closed fields was given by Prestel and 

Roquette ([P-R], Theorem 5.6): 

THEOREM 1.1: In the language of valued fields enriched by the predicates pn, 

n E N, the theory of p-adically dosed t~elds of t~xed p-rank d for which Pn is 

interpreted by the power set K n, admits elimination of quanti~ers. 

Returning to our problem as stated at the beginning, we have seen that  the 

criterion that  the value groups as well as the residue fields of L and F are elemen- 

tarily equivalent over those of K,  is not sufficient. So we are led to the question 

whether there exists a similar structure which will do the job. Such a structure 

was given by Basarab [B]. He introduced what he called "mixed structures" which 

connect value group and residue field by groups which are obtained from K • by 

multiplicative congruences. In [B], Basarab has obtained quantifier elimination 

for henselian fields of characteristic 0 with residue characteristic p > 0 relative 

to these mixed structures. 
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In the present paper, we will generalize Basarab's  result and at the same time 

simplify the concept of Basarab's  mixed structures. The structures that  we will 

consider are structures of additive and multiplicative congruences together with 

a relation between both. These will be called a m c - s t r u c t u r e s .  Basarab 's  result 

will be put into a larger framework by using the notion of tame extensions. This 

enables us to give answers to our general problem by relating it to the known 

model completeness results for elementary theories of valued fields. 

For several theories of henselian fields, we will show quantifier elimination 

(more precisely: substructure completeness) relative to the amc-structures.  This 

yields quantifier elimination in the language of valued fields with respect to suit- 

able classes of predicates which represent formulas of the amc-structures.  In this 

paper, we will not explicitly determine such predicates except for the cases in 

which the power predicates suffice. Delon [D] has shown quantifier elimination 

with respect to a generalization of the power predicates for various elementary 

classes of henselian fields of equal characteristic. Her results were generalized 

by L. van den Dries [VDD2] to the case of henselian fields of characteristic 0 

with residue characteristic p > 0. See also Weispfenning's primitive recursive 

quantifier elimination in [W]. 

swer to our original problem 

the structure of value group 

However, all these results do not give a simple an- 

of determining a clear cut structure strengthening 

and residue field and rendering relative quantifier 

elimination. But in turn, the proofs given in this paper  may be tailored to prove 

Delon's and van den Dries' results. A systematic t reatment  of this aspect will be 

given in [K2]. 

2. Basic not ions  and the  main  theorems  

Given a valued field K -- (K, v) let us denote by (gK the valuation ring, by K or 

K v  the residue field and by v K  the value group v K  = {va I 0 ~s a �9 K } .  If  there 

is danger of confusion, we will write v K to denote to which field the valuation 

refers. 

A subset ~ of v K  will be called initial segment  if it satisfies 

The initial segments of v K  are ordered by inclusion. Every element of a E v K  

may be identified with the smallest initial segment in which it is contained, that  

is {13 �9 v K  I w >/3}; in this way, v K  is an ordered subset of the ordered set of all 
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its initial segments. We may thus use 5 for initial segments as well as for elements 

of v K  (but if we say 5 r vK,  we will always mean an element). Similarly, the 

convex subgroups A _< v K  will be identified with the smallest initial segment 

that they are contained in. 

For every initial segment 5 of vK,  let Ad~ be the ideal {a �9 .A/[KI va > 5} 

of O K. In particular, Ad ~ = AdK is the maximal ideal of the valuation ring 

O K. Note that  AdK ~ = AdO for every 5 <: 0. Further, O H will denote the factor 

ring OK/Ad~:; this is a local ring with maximal ideal AdK/A, IK ~ . In particular, 

O ~ = K.  We write 7r~ for the canonical projection O g ~ O~. Note that for 

a �9 O K, the projection 7r6a is an invertible element of O 4 if and only if va = O. 

On the other hand, consider the multiplicative groups GI~ = K x/1 + AdK ~ . In 

particular, 

G K := G~ = K X / 1  + AdK" 

We write 7r~ for the canonical projection K • ---* G~<. Note that G 4 is the 

group of multiplicative congruence classes modulo AdK* in the sense of Hasse. 

The group G K reminds of the power predicates Pn. Indeed, if K is henselian and 

n is not divisible by the residue characteristic of K then Hensel's Lemma shows 

that a �9 K admits an n - th  root in K if and only if 7r~a admits an n - th  root in 

G K. If n is divisible by the residue characteristic then this does not work. But 

if in this case, the characteristic of K itself is 0, then the groups G 4 for 5 > 0 

may be used to overcome this difficulty, as we will see below. 

The local ring O 4 and the group G 4 are related through a relation given by 

Vx e o4 vy �9 a 4 :  e (x, y)  3 z  �9 o K :  = x ^ = y .  

For elements of value 0,. additive congruence modulo Ad 4 implies multiplicative 

congruence modulo 1 + M ~ .  Hence O5 induces a group homomorphism from 

Ol ~ x into G 4 given by 

0~: a + A / l ~ a ( l + A d ~ )  for a l l a e O ~ .  

We have 

(1) * x r~a = O~r~a for all a E O K . 

For every initial segment 5 of vK,  we consider the system 

= 



Vol. 85, t994 HENSELIAN FIELDS 281 

and call it the s t r u c t u r e  of  add i t i ve  a n d  m u l t i p l i c a t i v e  c o n g r u e n c e s  of  

level  8 in K,  or shorter: the a m c - s t r u c t u r e  o f  level  5. In particular, Ko is 

the pair (K, GK) together with the embedding 

-g• Oo : > G K 

whose cokernel is just the value group of K: 

~• (2) v K  ~- G K / O o  , 

and together with a unary predicate 

Pos(x) : -  O0(0,x) 

on G K whose range is exactly ~r~MK and which maps modulo ~)0K • onto the 

subset of positive elements in v K .  More generally, on GK ~ we define 

Pos~(x) : -  O~(0,x) 

whose range is exactly ~r~A4~:. For an arbitrary valued field K,  

(3) v K  ~- G K / { g  e G K I -~Pos(g) A -~Pos(g-1)} 

and the order on v K  (more precisely, the subset of all elements > 0) is just the 

image of the predicate Pos. 

Every formula ~ in the language of amc-structures can be encoded by a 

formula ~ in the language of valued fields augmented by a constant symbol 

for an arbitrary element in K of value 5, such that for all a l , . . . , a n  E (.-OK 

and b l , . . . , bm E K,  we have K ~ ~ ( a l , . . . , a n ,  b l , . . . , bm)  if and only if 

g~  ~ ~(Tr~al, . . . ,  7r,san, ~r~bl, . . . ,  ~ b m ) .  

Let two extensions L = (L,v) and F = (F,v)  of K be given. If L and F 

are equivalent over K, then by virtue of our preceding remark, L~ and F~ are 

equivalent over K~ for each 6 E v K  (note that the latter condition on 5 is crucial 

since we may only use constants from K).  We want to ask for the converse, i.e. 

whether from the equivalence of the amc-structures of level 8, the equivalence of 

K and L over F may be deduced. However, we do not want to let 5 run through 

all of vK;  we will gain a better  information if we restrict 5 to A for some convex 

subgroup A of v K ,  compensating by a suitable hypothesis on the extensions L 

and F of K.  
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Given a convex subgroup A of vK, there is a unique coarsening va of the 

valuation v whose value group is isomorphic to v K / A  and whose residue field 

Kv/, carries a valuation ~a with value group isomorphic to A such that v is the 

composition of v a and ~a; for details, see e.g. [Z-S]. 

Consider an arbitrary extension L of K. There is a unique smallest convex 

subgroup of vL containing A; it is just the convex hull of A and will again be 

denoted by A. The coarsening of the valuation v of L which corresponds to A is 

a prolongation of v a from K to L and will again be denoted by v a .  If the rank of 

L is larger than the rank of K then there may exist more than one prolongation, 

but v a is the finest of them. However, it is uniquely determined in case LIK is 

algebraic. If (L, v) is henselian, then so is (L, va); if in addition, LIK is algebraic, 

then (L, VA) may be viewed as an algebraic extension of some henselization of 

(K, va). 
An algebraic extension (kl, w)](k, w) of henselian fields is called t a m e  if kl 

is contained in the a b s o l u t e  r ami f i c a t i on  field of (k, w) which is defined to 

be the ramification field of the extension (k sep, w)l(k , w), where k ~p denotes the 

separable-algebraic closure of k, carrying the unique prolongation of the hensel- 

inn valuation w of k. It follows that every intermediate extension of a tame 

extension is again a tame extension: if (kl, w) ~ (k2, w) ~ (k3, w) ~ (k, w) and 

(kl,w)l(k,w) is a tame extension, then the same holds for (k2, w)l(k3, w ). An 

equivalent characterization of tame extensions is the following: for every finite 

subextension (k', w)l(k , w) of (kl, w)](k, w), the following holds: 

(T1) the residue field extension ktwlkw is separable, 

(T2) if p = char(kw) > 0, then the ramification index (wk' : wk) is prime to p, 

(T3) the extension is defec t less ,  i.e. 

(4) [k': k] = (wk': 

Note that  in general, the following f u n d a m e n t a l  i n eq u a l i t y  holds: 

(5) [k': k] > [k'w: kw]. 

A henselian field is called a defec t less  field if each of its finite extensions is de- 

fectless. An arbitrary valued field is called a defec t less  field if its henselizations 

are defectless fields. A valued field is called a t a m e  field if it is henselian and 

every algebraic extension is a tame extension. A tame field (k, w) is characterized 
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as being a henselian defectless field with a perfect residue field and a p-divisible 

value group (p = charkw > 0 or p = 1 otherwise). See [K1] for details on tame 

fields. 

A general not necessarily algebraic extension (kl, w)l(k, w) will be called p re -  

t a m e  if the following holds: 

(P1) the residue field extension klwlkw is separable, 

(P2) if p = char(kw) > 0, then the order of every torsion element of vkl /vk  is 

prime to p. 

Note that every extension of a tame field is pretame, and that  every algebraic 

pretame extension of a defectless field is tame. 

An extension L]K of valued fields is called i m m e d i a t e  if vL = vK and L -- K 

(if there is no danger of confusion, we will write L, K instead of Lv, Kv). 

To provide the most general setting for our results, let us consider elementary 

classes/C of valued fields (always assumed to be nontriviMly valued!) which have 

the following properties: 

(IME) "Immediate extensions are equivalent": if K,  L, F E K and L and F are 

immediate extensions of K,  then L --=K F, 

(RAC) "Relative algebraic closures": if L C/C, the quotient v L / v K  is a torsion 

group and the extension L[K is algebraic, then the relative algebraic closure L r 

of K in L is an element of K:, and L[L' is immediate. 

It is known that the following classes of valued fields have the above properties: 

tame fields (which includes henselian fields with residue characteristic 0, alge- 

braically closed valued fields, algebraically maximal Kaplansky fields), henselian 

finitely ramified fields (which includes ~-adically closed fields). All of them are 

defectless fields. For details, see [K1]. The definitions of algebraically maximal 

Kaplansky-fields and of finitely ramified fields are given below. 

THEOREM 2.1: Let ]C be an elementary class of valued fields which satisfies 

(1ME) and (RAC). Further, let K be a common valued subfield of the henselian 

fields L and F. Suppose that A is a convex subgroup of vK such that 

(a) (L*, v/x), (F*, v/x) E IC for all elementary extensions L* and F* of L and F 

on which v /x is nontrivial, 

(b) (K, v/x) is a defectless field, 

(c) (L, VA) and (F, v/x) are pretame extensions of (K, v/x). 
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Then the following statements are equivalent: 

(i) L ------K F, 
(ii) (L*)a  -=g~ (F*)z~ for some elementary extensions L*, F* of L and F, 

(iii) L~ --~g6 F6 for every 6 E A. 

For A = {0} we get the following corollaries: 

COROLLARY 2.2: Let 1C be the elementary class of henselian fields of residue 

characteristic O. I f  L, F E IC and K is a common valued subfield of L and F 

then Lo - x o  Fo implies L ":K F. This shows: IC admits quantifier elimination 

relative to the amc structures of level O. 

COROLLARY 2.3: Assume that L , F  are tame fields and that K is a com- 

mon valued subfield of L and F. I f  any henselization of K is a tame field, then 

Lo --Ko F0 implies L --K F. 

The latter corollary gives rise to the following question: do there exist functions 

definable in the theory of tame fields such that  in the language of valued fields 

enriched by these functions, every substructure admits a henselization which is a 

tame field? If this is true, then the theory of tame fields would admit  quantifier 

elimination relative to amc-structures  of level 0 in this enriched language. 

The special case considered by Basarab in [B] is the case of valued fields of 

mixed characteristic, that  is, valued fields of characteristic 0 with residue charac- 

teristic p > 0. Before discussing this case, let us introduce the following notation. 

Assume charK = 0 and let p be the c h a r a c t e r i s t i c  e x p o n e n t  of the residue 

field K ,  i.e. p = char(K) > 0 or p = 1 if char(K) = 0. The c a n o n i c a l  d e c o m p o -  

s i t ion  of the valuation v is defined as follows. Denote by AK the smallest convex 

subgroup of v K  containing the value vp ; note that  the value set {m. vp [ m E N} 

is cofinal in AK. We write ~ := YAK; this is called the coa r s e  v a l u a t i o n  as- 

signed to v. A valued field of characteristic 0 is of mixed characteristic if and 

only if ~ is coarser than v, i.e. AK r {0}. Denote by K the valued field (K, ~). 

The valuation ring O x of K is characterized as the smallest overring of O K in 

which p becomes a unit, i.e. O K is the ring of fractions of O K with respect to 

the multiplicatively closed set {pro I m E N}; consequently, the residue field K~) 

is of characteristic 0. Note that  ~ = v iffp = 1, and ~) is trivial iff AK = vK.  For 

m E N we write Km instead of Krn.vp �9 

Since I~ has residue characteristic charK~) = 0, every algebraic extension of 

a henselization of I~ is tame. This is immediately seen from the second char- 
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acterization of tame extensions given above; note that in this case, condition 3) 

is a consequence of the Lemma of Ostrowski (cf. [RIB], p. 236, ThSor~me 2). 

Further, if L is a henselian field, then I, is a henselian field of residue charac- 

teristic 0 (possibly trivially valued). Hence, with A = AK and /C the class of 

all henselian fields of residue characteristic 0, we obtain from Theorem 2.1 the 

following corollary: 

COROLLARY 2.4: Let L and F be henselian fields of characteristic 0 with residue 

characteristic p. I l K  is a common valued subfield of L and F, then the condition 

Vm E N : L ~  ==-Km Fm 

is equivalent to L --K F. Hence IC admits quantifier elimination relative to the 

collection of amc-structures of level m �9 vp, m E N. 

There is a second question that may come to one's mind in view of Corol- 

lary 2.3: if it is so that the amc structures are only powerful enough to deal with 

tame extensions, then possibly a certain uniqueness property for the "non-tame" 

algebraic extensions may help us further. This is indeed true, and it is the right 

moment to look at Kaplansky-fields. Henselian defectless Kaplansky-fields are 

characterized as tame fields whose residue fields do not admit finite separable 

extensions of degree divisible by the residue characteristic. The elementary class 

of henselian defectless Kaplansky-fields has properties (IME) and (RAC). For 

this and other details on Kaplanky-fields, see [K1]. Note that a Kaplansky-field 

is henselian and defectless if and only if it is algebraically maximal, i.e. it does 

not admit finite immediate extensions. The uniqueness property that we will 

employ in the proof of the next theorem on Kaplansky-fields is the following: 

LEMMA 2.5: I f  the residue field of the henselian field K does not admit  a finite 

separable extension of  degree divisible by p = charK, then the maximal  purely 

wild algebraic extensions of K are all isomorphic over K .  

An algebraic extension of the henselian field K is called p u r e l y  wild if it is 

linearly disjoint from every tame algebraic extension of K. For a proof of this 

lemma, see [KPR]. 

THEOREM 2.6: Let tC be an elementary class of henselian defectless Kaplansky-  

fields and let K be a common valued subfield of the henselian fields L and F. 

Suppose that A is a convex subgroup of  v K  such that (L, vz~), (F, v•) E/C. Then 

again, the statements (i), (ii) and (iii) of Theorem 2.1 are equivalent. 
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In particular, henselian defectless Kaplansky-fields admit quantifier elimina- 

tion relative to the amc-structures of level O. 

Note that this theorem applies even to cases where (K, v~) is not necessarily 

a defectless field; this is also a consequence of the uniqueness property. 

Another question to be asked is whether there are cases in which a reduct 

of the amc-structures will do the same job. There is a natural reduct of the 

amc-structures, namely the rings O ~. 

THEOREM 2.7: Assume that in addition to the hypothesis of Theorem 2.1, the 

following condition holds: 

(UNRAM) both extensions ( L, vA)I(K, v A ) and ( F, v~)l(K, v~) are unramified. 

Then the following statements are equivalent: 

(i) L - K  F, 

(ii) O~. --oR O~. for some elementary extensions L*, F* of L and F, 

(iii) O~ ---o~ (.9~ for every 6 E A. 

Note that  in particular, (UNRAM) holds in the case where A = vK. 

There is a second natural reduct of the amc-structures, namely the groups G e. 

See Theorem 3.11 and Corollary 3.6 below for the case A = {0}. Let us discuss 

here the case where A may be a nontrivial convex subgroup of vK; Theorem 

1.1 will be deduced from this case. We have to use stronger hypotheses. We 

will consider elementary classes /E of nontrivially valued fields which have the 

following properties: 

(IME +) if K, L, F E/E and L and F are extensions of K,  all of them having the 

same residue field, then vL --,g vF implies L ---K F, provided that vK is pure 

in both vL and vF, 

(RAC +) if L E ~ is an extension of K, both having the same residue field, then 

the relative algebraic closure L' of K in L is an element of/E, and vL' is pure in 

vL. 

Again, it is known that the elementary classes of tame fields and of henselian 

finitely ramified fields have the above properties; see [K1]. 

THEOREM 2.8: Let I~ be an elementary class of valued fields which satisfies 

(IME +) and (RAC+). Further, let K be a common valued subfield of the 
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henselian fields L and F with relative algebraic closures L ~ and F' in L resp. 

Y. Suppose that A is a convex subgroup of v K  such that 

(a) (L*, va),  (F*, va) E /C for all elementary extensions L* and F* of L and F 

on which v :, is nontrivial, 

(b) (L', V A ) and (F',  VA) are tame extensions of some henselizations o f (K ,  v ~ ). 

Assume further that the following condition holds: 

(DENSE) (Kvzx,~A) is dense in both (Lvzx,~A) and (Fv~ ,~A) .  

Then the following statements are equivalent: 

(i) L =-g F, 

(ii) (GL~.,PosA) --(a~.,pos~) (GF ~*,P~ and L*vA = K*vA = F*va for 

some elementary extension (L*, K*, F*) = (L, K, F)* of (L, K, F), 

(iii) (G~,Pos6)-(a~,Pos6)(G~,Pos6)  for every 6 E A.  

I f  in addition, the value groups of all valued fields in 1C are divisible, then the 

following statements are equivalent: 

(I) L --K F, 

(II) G~. - a ~ .  G~. and L*vA -- K*v~  = F*vA for some elementary exten- 

sion (L*,K*,F*)  = (L ,K ,F )*  o f ( L , K , F ) ,  

(III) G~ ~-a~ G~ for every 6 E A,  

(IV) K M L  ' ~ = K N F  n for e v e r y n E N .  

By "elementary extension (L, K, F)* of (L, K, F ) "  we mean an elementary 

extension of the structure (L D K C F) which may be formalized in a two-sorted 

language for a pair of valued fields with a predicate for a common subfield. Note 

that by virtue of condition (DENSE), the equality L*VA = K*vA = F*vA will 

hold whenever the elementary extension is highly enough saturated. 

Instead of requiring that the value groups be divisible it suffices to assume 

that the value groups of all valued fields in/C are members of one substructure 

complete elementary class of ordered abelian groups, which is closed under taking 

pure subgroups (and which may be axiomatized by use of certain constants). 

Furthermore, in (III) the groups G~. and G~ may be replaced by the relative 

divisible closures of G~ in G~ resp. G~. 

A field is called f ini te ly  ramif ied  if v K  has a smallest positive element wr and 

there is a prime p such that vp is a finite multiple of wr; consequently, charK - 0 

and charK = p. Then 7r is called a p r i m e  e l e m e n t  of  t h e  f in i te ly  rami f ied  

field K. For a finitely ramified field K with prime element 7r we have AK = Z.wr, 
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and (KvaK,  YaK ) is thus a discretely valued field. If L is finitely ramified and K 

is a vah,ed subfield of L, then also K is finitely ramified. If K has the same prime 

element and the same residue field as L, then ( K v a , ~ a )  is dense in (Lva,~z~) 

for A = A K. 

COROLLARY 2.9: Assume that L, F are henselian finitely ramified fields and that 

K is a common valued subfield of L and F, all of them having the same residue 

field and the same prime element. Then with A = AK,  the statements (i), (ii) 

and (iii) of Theorem 2.8 are equivalent. 

COROLLARY 2.10: Assume that in addition to the hypothesis of the preceding 

corollary, vaL  and vAF are divisible (i.e. vL and v F  are Z-groups). Then the 

s ta tements  (I), (II), (III) and (IV) of Theorem 2.8 are equivalent. 

In particular, the theory of p-adically closed fields of fixed p-rank d admits 

elimination of quantifiers relative to the groups G m'vp, m E N, as well as in the 

language enriched by the power predicates P~, n c N. 

In general, it is not possible to restrict the numbers n appearing in condition 

(IV) and as indices of the power predicates, to a finite set of natural numbers or 

to a set of natural  numbers which are not divisible by a fixed prime. However, 

there are cases (in particular, of certain "large" Kaplansky fields), where n has 

only to range over the powers of one given prime number. These cases will be 

discussed in the subsequent paper [KK]. 

3. A n  e m b e d d i n g  l e m m a  for  tame algebraic extensions, and g e n e r a l -  

i z a t i ons  

We will first describe the structure of a finite tame extension LIK of henselian 

fields. 

The residue field extension L I / f  is finite and separable, hence simple. Let ~ be 

a generator of it. We choose some monic polynomial f E K[X] whose reduction 

modulo v is the irreducible polynomial of ~ over K. Since the latter is separable, 

we may use Hensel's Lemma to find a root c E L of f with residue ~. From general 

valuation theory it follows that  the extension K(c)IK is of the same degree as 

K(~)IK and that  K(c) = K(-~) = L. Let us mention that  (K(c), v) is the inertia 

field of our extension L[K. 

Now we have to treat  the case o f v L  # vK.  Let a E v L \ v K  and assume 

that  n # 0 is the minimal natural  number such that  na  E vK.  If  a C L with 
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va = c~, then va n C v K  and thus there is some b E K w i t h v ( b a  n) = 0. Then 

the v-residue ba '~ E L v  = K ( c ) v  is not  zero, hence there is some h E K[X]  with 

a - n b - l h ( c )  = 1. By the minimali ty of n and condition (T2) for t ame  extensions, 

n is prime to p if cha r (Kv)  -- p > 0. Hence in the henselian field L, we may  use 

Hensel's Lemma to deduce the existence of some element ao E L which satisfies 

a'~ = a - ~ b - l h ( c ) ;  put t ing  d = aao E L we get bd n = h(c). Note tha t  we may  

choose h with v-integral  coefficients since it only has to satisfy h(~) = a %  E K(~)  

where h denotes the reduct ion of h modulo v. 

Since L I K  is a finite extension, the group v L / v K  is a finite torsion group, say 

(6) v L / v K  = Z . ((~1 + v K )  x . . -  > Z .  ( a t  + v K )  

where every ai  has finite order, say ni. Using the above procedure,  for 1 < i < r 

we choose elements 

�9 di E L with bldg" = hi(c),  where 

�9 bl E K with v(bl) = - n l a i  

�9 hi E OK[X] with vhi(c) = O. 

Then v L  = v K ( c ,  d l , .  . ., dr), and since K ( c )  C K(c ,  d l , . .  . ,  dr) C L and K ( c ) v  = 

Lv,  we also have Lv = K(c ,  dl . . . .  , dr)v. From condition (T3) on tame extensions 

it follows tha t  L = K(c ,  d l , . . . ,  dr). On the other hand, 

[L :  K(c)] > ( v L :  v K ( c ) )  = ( v L :  v K )  = 7 t i . . . n  r 

_> [K(c, d i , . . . , d r ) :  K(c)] = [L :  K ( c ) ] ,  

whence [L : K(c)] = n l . . . n r  which shows tha t  the extensions 

K(c ,  d l , . . . ,  di-1, d i + l , . . . ,  dr) iK(c)  and K(c ,  d l ) IK(c)  

are linearly disjoint for every i, 1 < i < r. Hence, i f K  C F and z, t l , . . .  , tr  C F 

such tha t  f ( z )  = 0 and bit n~ = hi(z) ,  then 

(c, d l , . . . , d r )  H (z, t l , . . . , t r )  

induces an embedding of L into F over K.  Since K is henselian, this is valuation 

preserving, i.e. an embedding of L into F over K.  

Let us note the following special cases: 

- if L = K,  then we may take ~, c and all hi(c) to be equal to 1, 
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- if LIK is unramified, then we may set r = 0. 

Using the "normal form" for finite tame extensions that  we have now intro- 

duced, we will prove the main embedding lemma for tame algebraic extensions: 

LEMMA 3.1: Let K be an arbitrary valued field, L a tame algebraic extension 

of some henselization of K and F an arbitrary henselian extension of K.  I f  L is 

embeddable into F over K,  then Lo is embeddable into Fo over Ko. Conversely, 

every embedding T of Lo into Fo over Ko may be pulled back to an embedding 

of L into F over K which induces z. 

I f  in addition, L[K is unramified, then the same works for every embedding of 

-s into -F over -K. I f  on the other hand -L = -K, then the same works for every 

embedding of G L into G r over G K. 

Proof." The proof of the first statement is straightforward and thus left to the 

reader. Let now be given an embedding T of Lo into Fo over K0. 

Since both L and F are assumed to be henselian, they both contain henseliza- 

tions of K. By the uniqueness property of henselizations, these are isomorphic 

over K and we may identify them. This henselization has the same amc-s t ructure  

of level 0 as K: for every a in a henselization of K there is some a '  E K such 

that  v(a - a') > va, so a and a '  have the same images under :r o and ~r~. Hence it 

suffices to prove our lemma under the additional hypothesis that  K be henselian. 

The following compactness argument for algebraic extensions is well known: 

Since L[K is algebraic, we have L = U ~ i  Ki where KI]K runs through all finite 

subextensions of L[K. I f  every Ki admits an embedding ~i into F over K,  then 

there is an embedding t of L into F over K and a subset J C I with L -- U jE j  Kj 

and Vj C J: tlKi = tj. In particular, if all ti are valuation preserving, then so is 

t, and if a11 are pullbacks of the respective restrictions of T, then t is a pullback 

of z. 

So we have to prove our lemma only in the case of LIK a finite extension of 

henselian fields. Let LIK be given as described above. By the remark preceding 

our lemma, it suffices to find an image in F for the tuple (c, d l , . . . ,  dr) in order 

to obtain an embedding of L into F over K. This tuple satisfies 

7(~) = 0 and A eo(r b,d, ~ ,, h=,(~) # 0 
l < i < r  

where/~i = 7r;bi and d~ = 7r~d~. Now T sends ~ to some element x �9 T and every 
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eli to some yi E G f which satisfy 

] (x )  0 and A Oo(h~(x)  - n i  - -  = , biyi ) A hi(x)  r 0 
l<: i<:r  

291 

The polynomial ] being irreducible and separable over K ,  the zero x is simple 

and thus gives rise to a zero z ~ F of f with residue x by virtue of Hensel's 

Lemma. 

Now let i E {1 , . . . ,  r}. We choose r/i E F such that  ~r~rii = Yi. Since h i ( x )  r O, 
- -  ~ 7 2 i  the relation Q)o(hi(x) ,biYi  ) is equivalent to Oohi(x)  ~ '~ = biYi which in turn gives 

~;hi(z)  0o~ohi(z) ~0h-7(x) - ~ * ~' = = = biyi = 7rob~?~ , 

- -1  - - n l  that  is, hi(z)b i rli = 1 mod AdF. So the polynomial 

(7) x o [x] - h i ( z )b  i ~ C 

reduces modulo v to the polynomial X nl - -  1 which admits  1 as a simple root since 

n~ is not divisible by the characteristic of K.  By virtue of Hensel's Lemma,  the 

polynomial (7) admits a root r/~ in the henselian field F. Put t ing t~ := r/~r/i C 

F, we obtain bit~' = h i ( z ) .  Consequently, the assignment (c, d l , . . . , d r )  H 

(z, t l , . . . ,  tr)  induces an embedding of L into F over K.  

We still have to show that  it is a pullback of T. But this will follow if we 

are able to show that  the assignment (~, d l , . . . ,  clr) H (x, Y l , . . . ,  Yr) determines 

the embedding of Lo into F0 over Ko uniquely. Since ~ generates L over K ,  it 

just remains to show that  the elements cl l , . . . ,c l r  generate G L over the group 

composi tum GK.t~oL. Given an element a E L, our choice of the di implies that  

there exist integers m l , . . .  ,mr ,  an element d t E K and an element g(c)  C OK[C] 

of value 0 such that  the value of a - l d ~  1 . . .  dm~d'g(c)  is 0 and its residue is 1. 

Hence 

7r~a = d-~l- . . . .  dT~ ~. TrOd'. 0o~(~) 

with TrOd' E GK and ~)og(c) C ~)oL. This concludes our proof. (The special 

cases mentioned in the lemma are shown by straightforward modifications of this 

proof.) I 

From this proof, we may extract one more interesting case, namely the case 

where the relation (9o may be omitted. We see from the proof that  it is indeed 

superfluous if all h~(c) can be chosen to be an element of K.  But this means that  
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in L there exists a subfield C which has the same value group as L, the same 

residue field as K and is a field complement  of the inertia field L ~ of L I K  over the 

henselization K h of K in L. This means, C is linearly disjoint from L i over K h 

and the compos i tum L i . C  equals L. Conversely, one can show tha t  every field 

complement  C of the inertia field L i in L over K h has the proper ty  vC = vL 

and C = K. Since LI Kh is supposed to be a tame algebraic extension, the same 

is t rue for the subextension C I K  h, 

LEMMA 3.2: Let K be an arbitrary valued field, C a tame algebraic extension 

of some henselization K h of K such that C = K.  Then C is generated o v e r  K h 

by its subset 

R =  [_J{zeCIxneK}. 
nCN 

of radicals over K,  i.e. C = (Kh(R) ,  v) (which is equal to the henselization of 

(K(R) ,  v) inside of C). 

Proo~ Let a E vC \ v K  and n C N \ { 0 }  minimal with na C vK.  Choose a E C 

with va = a and c E K such tha t  v(a n - c) > 0 (which is possible since va n E v K  

and C -- K) .  By our hypothesis  it follows that  {~[K h is a tame extension, so 

n (being minimal  with na E vK)  is not  divisible by the residue characteristic.  

Hence, by vir tue of Hensel 's L e m m a  there exists an element a0 E C of value 0 

such tha t  a~ = a -nc .  Replacing a by aao, we obtain an element a E C of value 

a which satisfies a n E K.  

Let R be the collection of all radicals a obtained in this way for all a C vC \ vK.  

Then (Kh(R) ,  v) has the same value group as C. Since C = K,  it also has the 

same residue field as C. As a par t  of a tame extension, C[(Kh(R) , v )  is tame. 

Since it is immediate,  it must  be trivial: C = Kh(R) .  I 

We may  now deduce the following lemma from the proof  of Lemma 3.1: 

LEMMA 3.3: Let the hypothesis be as in L e m m a  3.1 and assume in addition 

that there exists a fe ld  complement C of the inertia field L ~ in L over K h. 

(a) For all embeddings p of L into F over K and a of G L into G r over GK, 

there exists an embedding of L into F over K which induces p and a. 

(b) I f  Vn E N : K N L n C K N F ~, then for every embedding p o f L  into -F over 

K there exists an embedding of L into F over K which induces p. 

Note: if also F is a tame algebraic extension of some henselization of K which 

admits  a field complement  of its inertia field, then the embedding a in (a) may  
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be replaced by an embedding  of vL into vF  over vK.  The proof  is left to the 

reader. 

Two algebraic extensions of K are isomorphic over K if they  can be embedded  

into each other  over K .  Hence we get the following theorem as an immedia te  

corollary to L e m m a  3.1 and L e m m a  3.3. It  may  be seen as a classification of 

t ame  algebraic extensions relative to their  amc- s t ruc tu re s  of level 0. 

THEOREM 3.4: Let K be an arbitrary valued field and L, Y tame algebraic 

extensions of some henselizations of K. Then L and F are isomorphic over K if 

and only if their amc-structures of level 0 are isomorphic over K0. Under the 

additional hypothesis of Lemma 3.3, the isomorphism will follow already f rom 

(1) an isomorphism of the amc-structures without the Oo-relation, or 

(2) an isomorphism L ~- F over K together with the condition 

V n C N : K N L  n = K N F  n. 

Moreover, if L I K  and F I K  are unramified, then the isomorphism follows al- 

ready  i l L  and F are isomorphic over K.  I f  on the other  hand, L, F and K have 

the same  residue field, then the isomorphism follows already if G L and G F are 

isomorphic over GK , or if Vn E I~ : K n L n = K N F n. 

[n all preceding conditions, the isomorphism GT. ~- G F over G K m a y  be re- 

placed by an isomorphism vL ~- vF  over vK,  if the hypothesis of L e m m a  3.3 

applies to both L and F. 

Similarly, we may  use L e m m a  3.3 to prove 

COROLLARY 3.5: Let ~ be an elementary class of valued fields which satisfies 

(IME +) and (RAC+).  Let L , F  E /C and assume that K is a common subfield 

of L and F such that the relative algebraic closures of  K in L and F are tame 

extensions of some henselizations of  K.  Assume further that L, K and F have 

the same residue fields. Then the following statements are equivalent: 

(i) L ----K F, 

(ii) (G L, Pos) - - (c  K,Pos) (GF,  Pos),  

(iii) G L = c K  G F and v L - , g v F ,  

(iv) V n C N : K N L  n = K N F ~ and vL =_vK VF. 

Proof." The  proof  tha t  (i) implies (ii), (iii) and (iv) is s t ra ight forward and thus 

left to the reader.  By  (RAC +), the relative algebraic closures L ~ and F ~ of K in 

L resp. F are member s  of K:, and vL r is pure  in vL as well as v F  ~ is pure  in vF. 
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By virtue of the preceding theorem or Lemma 3.3, Vn E N : K n L tn  = K n F '~ 

would imply L ~ -~ F ~ over K.  But K ~ L  ~n = K A F  ~ follows from K A L  n = K n F  ~ 

sinceKML ' ~ = K n L  ~ a n d K ~ F  ~ = K N F  n. 

GL ----GK G F implies that the relative divisible closures G~ and G~ of a K in GL 

resp. GF are isomorphic over G K. Since L~I K and F~I K are algebraic, vL'/vK 
and vF'/vK are torsion groups. In view of L' = K = F' and (2), this shows 

that  G L , / G  K and GF , /G  K are torsion groups. Hence, GL, , G F, are contained in 

G~ resp. G~. The isomorphism of the latter groups induces embeddings of G L, 

into G F and of G F, into GL, both over G K. By virtue of Lemma 3.3, this again 

implies L ~ ~ F ~ over K.  

We have shown that  each of the statements (ii), (iii) and (iv) implies L'  TM F '  

over K. We may thus identify L'  and F ~. Since L ' JK is algebraic, v L ~ / v K  is a 

torsion group. Hence v L  ~ v K  v F  implies v L  --vL' v F .  From our hypothesis that  

K: has the property (IME +) it now follows that  L --L' F and hence also L ----K F. 

It  remains to show that  (GL,Pos) --(aK,Po=) (GF,P~ implies v L  =~K v F .  

But (3) shows that  every formula in v K  may be encoded by a formula in 

(GK, Pos). This concludes our proof. | 

An application of this corollary to tame fields reads as follows. Note that  the 

elementary class of divisible ordered abelian groups is substructure complete (i.e., 

admits quantifier elimination); this was proved by Robinson and Zakon [R-Z]. 

COROLLARY 3.6: Assume that  L , F  are tame fields and that  K is a common  

valued subfield o f  L and F, all o f  them having the same residue field. I f  any 

henselizat ion o f  K is a tame  field, then L ~K F is equivalent to the condit ion 

(Gr., Pos) --(CK,Po=) (GF, Pos) (and to Vn E N: K M L" = K f3 F n in case v L  and 

v F  are divisible). 

For the case of L, K,  F not all being equal, we need a generalization of Lemma 

3.1. Suppose that  K is a defectless field, F a henselian extension field of K and 

LIK a pretame extension which admits a valuation transcendence basis T.  That  

is, T is a transcendence basis of L I K  of the form 

:T = {xi ,  yj  I i E I ,  j E J }  such that: 
(a) the values vx i ,  i C I form a maximal system of values 

(8) in v L  which are rationally independent over v K ,  and 

(b) the residues ~-j, j E J form a transcendence basis of LIK .  

Suppose that  v is an embedding of L0 into Fo over Ko. Then L is embeddable 
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into F over K .  But also vL is embeddable into vF  over vK  since vL ~- GL/tg0 ~x  

and the order relation on v K  is induced by Pos. Denote these embeddings by a 

x '  ' J} F such that  vx~ pvxi for and p and choose a set T '  = { i, Yj I i E I,  j E C = 
-D- all i E I ,  and yj = a ~  for all j E J .  Then T'  is a valuation transcendence basis 

of the subextension (K(T) ,  v)lK of FIK,  and the assignment xi H X~, i E I ,  
! yj H yj, j E J ,  induces a valuation preserving isomorphism from ( K ( T ) , v )  

onto (K(T ' ) ,  v) over K (more precisely spoken, this isomorphism induces the 

embedding p on the value groups and the embedding a on the residue fields - cf. 

[BOU], chapter VI, w Theorem 1). This isomorphism is even a pullback of 

the isomorphism of the respective amc-structures  of level 0 which is a restriction 

of r.  Similarly as in the proof of Lemma 3.1, this is shown by proving that  the 

residues ~j, j E J ,  generate K ( T )  over K and that  the elements ~roxi , i E I, 

generate G(K(T),v) over the compositum GK.  OoK(T)x .  

Hence we may identify K ( T )  and K ( T ' )  as a common valued subfield of L and 

F. We may now apply Lemma 3.1 to get: 

LEMMA 3.7: Let K be a common subfield of the henselian fields L and F. 

Assume that L admits a valuation transcendence basis T such that L itself is a 

tame extension of some henselization (K(7"), v) h. Then for every embedding r 

of Lo into Fo over Ko there is an embedding of L into F over K which induces 

T .  

The special cases mentioned in Lemma 3.1 go through as follows. If L[K is 

unramified then again, an embedding of L into F over K will suffice. On the 

other hand, if L = K then a simple embedding of GL into GF over GK may not 

suffice. We have seen above that  in the ramified case, an embedding p of vL into 

v F  over v K  is needed. But in view of (3), this will be induced by an embedding 

of (GL,POs) into (Gr ,Pos )  over (GK,POs); hence in the case L = K ,  such an 

embedding will suffice. For the following considerations, let us keep these special 

cases in mind. 

In the sequel, let us assume in addition that  K is a defectless field and that  

L is the henselization of a finitely generated extension K '  of K.  Then K '  is a 

finite extension of K ( T )  for every transcendence basis T of K ' I K .  From general 

valuation theory it follows that  also vL = vK '  is finitely generated over v K  and 

that  L = K '  is finitely generated over K.  Since LIK is separable by assumption, 

we may choose the elements yj such that  their residues ~j form a separating 
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transcendence basis of LIK. Similarly, since the order of every torsion element of 

v L / v K  is prime to p = char K, we may choose the elements xi such that p does 

not divide (vL : vK(~r)). Since K is assumed to be a defectless field, the same is 

true for (K(T) ,  v) by virtue of [K1], Theorem 3.1. This shows that for (K(:r) ,  v) h 

the henselization inside of L, the finite extension LI(K(T) ,  v) h is tame. 

Let LIK be any pretame extension which admits a valuation transcendence ba- 

sis 7-. Then every finitely generated subextension is contained in a henselization 

of a finitely generated pretame subextension which admits a finite subset To C 3- 

as its valuation transcendence basis. This in turn is a tame algebraic extension of 

some henselization (K(TO), v) h, as we have just shown. Let 7 be an embedding of 

L0 into F0 over K0, and assume in addition that F is ILl + saturated. Lemma 3.7 

then yields that every finitely generated subextension of L]K may be embedded 

over K into F. So by general model theory (cf. [P], Korollar 2.19), there is an era- 

bedding of L into F over K. One may even assume that this embedding induces 

T; this is shown as in the proof of Lemma 8.2 of [K1] by introducing additional 

predicates which in some sense represent the embedding T. 

Now we have to deal with the case where LIK does not admit a valuation tran- 

scendence basis. Nevertheless, there are subfields which are maximal in having 

a valuation transcendence basis. We just have to take T as in (8) and form the 

subfield L" := (K(T) ,  v) of L. We observe that by definition of T, the quotient 

v L / v L "  is a torsion group and L[L" is algebraic. Consequently, if L is a member 

of some elementary class /C which has the (RAC) property, then we may take 

L ~ to be the relative algebraic closure of L" in L to obtain an intermediate field 

L ~ E K which admits a valuation transcendence basis and satisfies that L[L ~ is 

an immediate extension. We have thereby proved the following lemma: 

LEMMA 3.8: Let K be a common defectless subfield of the henselian fields L 

and F such that L[K is a pretame extension. Assume that L is a member of an 

elementary class ]C of valued fields which has the (RAC) property. Then there 

exists a subfield L I E ]C of L which admits a valuation transcendence basis and 

such that L[L' is immediate. Moreover, if  F is an IL[+-saturated extension of 

K,  then for every embedding T of Lo into Fo over Ko there is an embedding of 

L into F over K which induces T. 

We have remarked in the introduction that every formula ~ in the language 

of amc-structures of level 6 can be encoded by a formula ~ in the language of 
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valued fields augmented by a constant symbol for an arbitrary element in K of 

value 5. Thus, by general model theory one may derive the following 

LEMMA 3.9: I f  K* is an elementary extension of K and a special model of 

cardinality ~ > cardK, then (K*)~ is an elementary extension of K~ which is 

also a special model of cardinality ~. 

By virtue of this lemma and a back and forth argument (similar to the proof 

of the uniqueness of special models, cf. [C-K], Thin. 5.1.17), Lemma 3.8 leads to 

LEMMA 3.10: Let IC be an elementary class of henselian fields which has the 

(RAC) property, and let K be a common defectless subfield of L, F E tC such that 

L[K and F[K are pretame extensions. I fLo --K0 F0, then there exist elementary 

extensions L* and F* of L and F which contain relatively algebraically closed 

subfields L' resp. F ~ such that 

(a) L', F' E/C, 

(b) L' and F ~ are isomorphic over K, 

(c) L* ]L' and F* IF' are immediate extensions, 

(d) (L*)o (r*)o. 

Again, the special cases go through. If L[K and FIK are unramified, then 

Lo ----Ko Fo may be replaced by L _--~ F. If L, K and F have the same residue 

fields, then Lo ----Ko Fo may be replaced by (CL, Pos) -(eK,Pos) (CF, Pos). 

From what we have shown above, we obtain the following special case of The- 

orem 2.1: 

THEOREM 3.11: Let IC be an elementary class of henselian fields which has the 

properties (IME) and (RAC). Further, let K be a common defectless subfield 

ofL,  F E /~ such that LIK and F[K are pretame extensions. Then L --K F is 

equivalent to Lo =Ko Fo. 

I f  L[K and F[K are unramified, then L =--K F is equivalent to L ---~ -ft. I f  

on the other hand, L, F and K have the same residue field, then L =-K F is 

equivalent to (CL, Pos) -(cK,pos) (GF, Pos). 

In the sequel, we will adapt these results for the case of Kaplansky-fields. To 

do this, we need the following lemma. 

LEMMA 3.12: Let L and F be two henselian defectless Kaplansky-fields and K 

a common henseiian subfield of them. Assume that both v L / v K  and v F / v K  are 
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torsion groups and both L]K and F[K are algebraic extensions. If  K does not 

admit any nontrivial tame algebraic extension inside of L or F, then the relative 

algebraic closures of K in L and F are isomorphic over K. 

Proof: From the hypothesis and the fact that  henselian defectless Kaplansky-  

fields have the (RAC)-property,  we deduce that  the relative algebraic closures 

of K in L and F are both henselian defectless Kaplansky-fields, i.e. tame fields 

whose residue fields do not admit  a finite separable extension of degree divisible 

by p = charK. Hence they are both maximal purely wild algebraic extensions of 

K.  Moreover, the residue field of K does not admit  a finite separable extension of 

degree divisible by p (since otherwise, this would give rise to a tame subextension 

of the relative algebraic closures). By theuniqueness  stated in Lemma 2.5, the 

relative algebraic closures are isomorphic over K.  | 

Assume that  L and F are henselian extensions of K such that  Lo =--Ko Fo. By 

virtue of Lemma 3.9 and the uniqueness of special models ([C-K], Thin. 5.1.17), 

there exist elementary extensions L* and F* of L and F such that  (L*)o and (F*)o 

are isomorphic over K0. Since L* - -g  F* implies L =K F, we may assume from 

the start  that  T : L0 --Ko Fo. Let us take T c L and the corresponding 5 r~ C F as 

before; but instead of taking L ~ to be the relative algebraic closure of (K(~r), v) 

in L, we let L ~ be the maximal tame algebraic extension of the henselization 

(K(Sr), v) h in L (which is the intersection of its absolute ramification field with 

L). Then by Lemma 3.7, there is an embedding ~ of L t into F over K which 

induces T. Let F ~ be the isomorphic image of L ~ in F. By our choice of L ~ we 

have that  vL/vL  ~ is a p-group and that  L[Lt is purely inseparable algebraic. Since 

induces T, it follows that  the same holds for v F / v F  ~ resp. F[F ~. Thus, also F ~ 

admits no tame algebraic extension inside of t v. We may now replace L ~ and F t 

by their relative algebraic closures in L resp. F which are still isomorphic over K,  

according to Lemma 3.12. Then the extensions L[L ~ and F[F  ~ will be immediate 

since the henselian defectless Kaplansky-fields have the (RAC) property. We 

have thus shown: 

LEMMA 3.13: If  IC is an elementary class of henselian defectless Kaplansky- 

fields, then Lemma 3.10 and Theorem 3.11 hold without the hypothesis that K 

be a defectless field and L[K and F[K be pretame extensions. 
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4. A m c - s t r u c t u r e s  of  level  A, a n d  t h e  p r o o f  of  t h e  m a i n  t h e o r e m s  

Throughout this section, let K be a common valued subfield of L and F and A 

be a convex subgroup of vK. In the sequel, we will consider some properties of 

amc-structures of arbitrary level 6. Note that 4.1, 4.2, 4.3 below hold equally 

well for the reducts O ~, G ~ and (G ~, Pos~). 

LEMMA 4.1: Let % 6 be two initial segments o f v K  such that ~ ~ ~ C 5. Then 

every isomorphism from L~ onto F6 over K~ induces an isomorphism from L v 

onto Fv over Kv. 

Proo~ Consider the ideal A4V/A,/~ of the ring (9 ~. For ~, an initial segment of 

vK and L any valued field extension of K, we have 

"y 6 x �9 ML/M  , = ,  Vy �9 3z �9 M,/M  : x = y z .  

Since O~ is a local ring with A4L/AJ~ as its maximal ideal, an isomorphism 

from L~ onto F~ over K5 carries M L / M ~  onto MF/A4~ .  Consequently, such 

an isomorphism will also carry ~ M L / A 4  L onto A4~/A4~. Thus, also the subgroup 

(1+~4~)/(1+A/1~) = ~)~((I+AJ~)/Ad~) of G~ is sent onto ( l+2~4~) / ( l+Ad~)  = 

~)~((1 + A/t~)/A/I~). Since the projection of an amc-structure of level 8 onto an 

amc-structure of level ? is obtained by reducing the ring O ~ modulo the ideal 

2~4~/AA ~ and reducing the group G ~ modulo the subgroup ( l+A/t~) / (1  +A/t~), it 

follows that  every isomorphism from L~ onto F~ over K5 induces an isomorphism 

from L~ onto F~ over g~ .  | 

We will now consider the following property which is condition (iii) of Theo- 

rem 2.1 (also cited in Theorem 2.2): 

(9) L~ ~K~ F~ for every 6 E A. 

We want to "pull it back" to the elementary equivalence of the respective amc- 

structures of level A for elementary extensions of L and F with suitable saturation 

(which is condition (ii) of Theorem 2.1). From Lemma 3.9 and the uniqueness of 

special models (cf. [C-K], Tam. 5.1.17) we get 

LEMMA 4.2: i f (9)  holds, then there are elementary extensions of L and F whose 

amc-struetures of level 8 are isomorphic over K~ for every 5 C A. 

On the basis of this lemma, we prove 
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LEMMA 4.3: If  (9) holds, then there are elementary extensions of L and F 

whose amc -structures of level A are isomorphic over K~.  

Proof: By virtue of the preceding lemma, we may assume w.l.o.g, that L5 is 

isomorphic to F~ over K~ for every (~ E A. We will form suitable ultrapowers of 

L and F, using A as an index set. Since the collection of all final segments of A 

is closed under finite intersections, there exists an ultrafilter 7) on A containing 

all final segments (hence it is nonprincipal). 

By our hypothesis on L and F, we get that the ultraproducts 1-I~eA L~/~3 

and rI~e~ F~/7) are isomorphic over I]~e~ K6fD.  On the other hand, taking 

5" = rI~eA 6/ / )  which is an initial segment representing an element of the value 

group of rI~eA K~/D,  we see that these ultraproducts are just the amc-structures 

of level (~* of the elementary extensions L* := 1-I~e~ LFD, F* := 1-I~eA FFD and 

K* := rI~eh K/~D of L, F and K respectively. 

Now 5* contains every 6 E A, hence A C 5*. So by virtue of Lemma 4.1, 

the isomorphism of the amc-structures of level 5* induces an isomorphism of the 

amc-structures of level A of L* and F* over that of K* and hence also over KA. 

| 

This lemma proves that condition (iii) of Theorem 2.1 implies condition (ii). 

To show that condition (ii) implies condition (i), we carry on as follows. As L* 

is an elementary extension of L, we know that vL is pure in vL* and L*[L is 

regular. Hence L*[K is a pretame extension like L[K. The same holds for F* 

in the place of L*. Since L* ----K F* implies L --K F, we may assume from the 

start that L~ --K~ Fro. Now we want to apply Theorem 3.11 (resp. Lemma 3.13 

for the case of Theorem 2.2), so we have to "switch" from the amc-structures of 

level A to the amc-structures of level 0 associated to the coarsening v~ of v. 

LEMMA 4.4: If  L/, ~KA F~, then 

( L V A , ~ )  --(KvA,V~) (FvA,~A) and (L, vA)0 ------(K,v~) ~ (F, VA)o . 

Proof'. From L~, --K~ F~  we obtain OL ~ --o~ (-9F~" But these rings are just 

the valuation rings of (LvA,~A), ( F v A , ~ )  and (Kv/, ,~A) respectively. The 

equivalence of the valuation rings implies the equivalence of the associated valued 

fields; this proves the first assertion. 

Observe that 

.M~ = {a E K Ira > A} = {a C K I vAa > O} = AJ(K,~) �9 
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Consequently, GK ~ = G(K,vA). The same holds for L and F in the place of K. 

Thus, we have 

(10) (O(L,a,va) , G(L,vA) , OA) ~--(O(K~A,~A),G(K,.A),OA) (O(FVa,~A) , G(F, va), ~A). 

But Kv~ is the fraction field of the valuation ring O(K~a,~), and Oa is just the 

restriction of the O0-relation associated to (K, vA), which we will call (~.  For 

every a # 0 in this fraction field, a or a -1 is contained in the valuation ring and 

moreover, O~(a, b) r O~(a -1, b-l).  Again, all this holds as well for L and F in 

the place of K. Hence, (10) implies our second assertion. | 

If one of the two fields (L, VA), (F, v~) is trivially valued, then it follows from 

the first assertion of the preceding lemma that both and also (K, v~) are trivially 

valued and that L --K F. In this case, we are done. 

Now let both (L, VA) and (F, vA) be nontrivially valued. By condition (a) 

of Theorem 2.1 it then follows that (L, VA), (F, VA) E )U. By virtue of Theo- 

rem 3.11 (resp. Lemma 3.13), the preceding lemma shows that condition (ii) of 

Theorem 2.1 implies 

(11) (L, vA) =--(K,~) (F, VA) and (LVA,~A) ~--(K~,~) ( F v ~ , ~ ) .  

So to complete the proof that condition (ii) implies condition (i), we just need 

the following lemma. 

LEMMA 4.5: Let LIK and FIK be any valued tield extensions. If (11) holds, 
then L ~K F. 

Proof'. By the first assertion of (11) we have L --K F as fields. Let the valuation 

v be given by a predicate 59 for the valuation ring. Then O(x) holds if and only 

if 

v (x) > o v = o A > o ) .  

So (11) implies that the equivalence of the fields holds even with the predicate 

for the valuation, i.e. L --K F.  

We leave it to the reader to adapt this proof for the case of a binary predicate 

for valuation divisibility (which is used in case the language does not contain a 

function for the multiplicative inverse). | 

Note that this lemma does not require that the convex subgroups of vL and vF 
be the convex hulls of their restriction A to vK. 
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As we have already remarked in the beginning, the implication 

L ----K F ~ V6 E A: L~ --K~ F~ 

follows from the fact that for every 6 E vK the formulas of the amc-structures of 

level 6 can be encoded by formulas of the valued fields, using one constant of value 

6. Hence, Theorem 2.1 and 2.2 are now completely proved, and a straightforward 

adaptation of the proof verifies Theorem 2.4. 

Only Theorem 2.8 awaits a special treatment. The modifications which are 

necessary for its proof will be outlined in the sequel. 

By our hypothesis that (KvA,~A) be dense in both (Lv/,,~A) and (FVA,~A), 

we know that 

O~ = O~ = O~- for every 6 E A. 

Let us assume in addition that 

(G[,Pose) --(C~,Pos~) (G~-,Pos~) for every 6 E A 

which is statement (iii) of Theorem 2,8. By the procedure described at the 

beginning of this section, we obtain an elementary extension (L*,K*,F*) of 

(L, K,  F) (since we took ultrapowers over one fixed ultrafilter), such that 

(12) O~. = O~.  = O g  and (G~., POSA) --(a~.,PosA) ( GF~*' POSA). 

The first assertion shows that (L*vA,vA) = (K*VA,VA) = (F*VA, VA). Hence, 

we have proved that statement (iii) of Theorem 2.8 implies statement (ii). If we 

are able to show that (L*, va) --(K.,,z~ ) (F*, VA), then by Lemma 4.5 we will 

obtain L* --K- F* which implies L --K F, and the first part of Theorem 2.8 will 

be proved. 

We have already shown that G ~  = G(K,va). Furthermore, POSA is just the 

predicate Pos on G(K,.z~ ). The same holds for L*, K* and F* in the place of K. 

Now the second assertion of (12) reads as 

(G(L*,vA)' Pos) ------(G(K" '~a),Pos) (G(F*,va), Pos),  

and in view of L*va = K*v~ = F*vA, Corollary 3.5 proves (L*, v~,) --(K-,v~) 

(F*, VA), if we are able to show that the relative algebraic closures of (K*, vA) 

in (L*, VA) and (F*, v~) are tame extensions of some henselizations of (K*, VA). 
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By hypothesis, this holds for L, K, F in the place of L*, K*, F*. In particu- 

lar, this shows that L~vA and F~vA are separable extensions of Kv/,. On the 

other hand, condition (DENSE) yields that both of them lie in the completion of 

(KvA, ~/, ). It is known that henselian fields are separable-algebraically closed in 

their completions (cf. [P-Z], Corollary 7.6). Thus (L'vA, ~ )  and (F'vA, Va) are 

just henselizations of (KvA, ~A). This yields that also (L', v) and (F' ,  v) are tame 

extensions of some henselizations of (K, v). We leave it to the reader to verify 

that  then also the relative algebraic closures of (K, v)* in (L, v)* and (F, v)* are 

tame extensions of some henselizations of (K, v)*. In view of Lemma 2.16 and 

Lemma 2.17 of [K1], the same holds for the coarsening vA, so we are done. 

Now we turn to the second part of Theorem 2.8. The proof of the implication 

(III) :=~ (II) ==~ (I) is similar to that of (iii) :=~ (ii) =~ (i), except for the following 

modification. By hypothesis, (L*, vA), (F*, vA) C/C have divisible value groups. 

The elementary class of divisible ordered abelian groups is substructure complete, 

hence we have vAL* ----v,,g* vAF*. Therefore, we may apply Corollary 3.5 for 

the proof of (II) ~ (I). 

The implication (IV) :=~ (I) will also readily follow from Corollary 3.5 and 

Lemma 4.5 if we show that assertion (IV) implies Vn C N: K* NL *n = K* N F  *n, 

where K*, L* and F* are the elementary extensions constructed by the above 

procedure. But the assertion K n L n = K M F n is equivalent to 

V x E K ( 3 y C L : y n = x ~  ~ 3 z E F : z  n = x )  

which is an elementary sentence assumed to be valid in the structure (L, F, K).  

Hence it is also valid in the elementary extension (L*, K*, F*) = (L, K,  F)* of 

(L, K, F). This concludes the proof of Theorem 2.8. 

5. A p p e n d i x :  re la t ive  comple t enes s  a n d  m o d e l  c o m p l e t e n e s s  

In this appendix we will use the methods of the preceding section to prove two 

versions of Theorem 2.1 which replace "----K" by "-~" and by " - " .  These versions 

generalize theorems proved by van den Dries [VDD1]. However, it should be 

said that  the case of henselian fields of mixed characteristic treated in [VDD1] 

appears indeed to be the most important application. 

THEOREM 5.1: Let IC be an elementary class of valued fields which is model 

complete relative to value groups and residue fields. Let L]F be an exten- 

sion of valued fields. Suppose that A is a convex subgroup of vL such that 
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(L*, VA), (F*, v/x) E ]C for all elementary extensions L* and F* of L and F on 

which v/x is nontrivial. Then the following statements are equivalent: 

(i) L -~ F, 

(ii) (L*vA,~,~) -~ (F*VA,~/X) and VAL* -~ v/xF* 

for some elementary extension (L*, F*) = (L, F)* of (L, F), 

(iii) (_9~ -< (9~ and vL -< vF  for every 6 C A. 

Proof'. L -~ F is the same as L --L F, and O~ -< O~ is the same as OL a - -of  OF ~- 

Hence, the proof of (i) ~ (iii) is straightforward and left to the reader. 

If (L*,va) is nontrivially valued, then (ii) ~ (i) follows from our hypotheses 

that (L*, v/x), (F*, v/x) E ]C and that/C is model complete relative to value groups 

and residue fields, together with an application of Lemma 4.5. If (L*, v/x) is triv- 

ially valued, then so is (F*, v/x) by virtue of v/xL* -< v/xF*. Then (L*va, ~x) -< 

(F*va ,~a)  is the same as L* -< F*, which in turn implies L -< F. 

It remains to prove (iii) ~ (ii). As in the preceding section, OL ~ - -of  OF ~ is 

shown to imply 

(L* v/x, ~ )  ~(L*vA,~A) (F* v/x, ~A ) 

which is just the first assertion of (ii). Furthermore, for suitably saturated ex- 

tensions L* C F* of L and F, also vL* and vF* are highly enough saturated 

extensions of vL and vF. Then vL -< vF  will imply that vL* ~ vF* over vL. 

But such an isomorphism maps the convex hulls of A in vL* and vF* onto each 

other and thus induces an isomorphism VAL* ~- v/xF* over VAL. | 

THEOREM 5.2: Let IC be an elementary class of valued fields which is com- 

plete relative to value groups and residue fields. Let L and F be two valued 

fields. Suppose that A is a common convex subgroup of vL and vF  such that 

(L*,v/x), (F*,VA) E 1C for all elementary extensions L* and F* of L and F on 

which vz~ is nontrivial. Enlarge the language of valued fields by constant symbols 

ci, i C I, which are interpreted in L and F such that A is precisely the smallest 

convex subgroup of vL resp. vF  which contains all values vc~. Then the following 

statements are equivalent: 

(i) (L, c )i 1 - (F,  

(ii) (L*vA,-~A, Ci/V/X)i~I -- (F*v/X,~A, Cl/VA)i~I and v/xL* - vAF* 

for some elementary extension (L*, F*) = (L, F)* of (L, F), 

(iii) V~i C A :  (O~, 7r~ci)iel -- (O~, zr~ci)~cl and (vL, vci)iei - (vF, vc~)i~. 



Vol. 85, 1994 HENSELIAN FIELDS 305 

Proof." Almost everything is similar to the proof of the preceding theorem (note 

that Lemma 4.5 also works with "=" in the place of "~K")" Also the new 

constants may be handled straightforwardly. The only implication that should 

be pointed out is 

(13) (vL,  vc~)iel  - (vF,  vc~)~ei ~ vAL*  -- v A F *  

since this is precisely why the constants were introduced. Indeed, for a suit- 

ably saturated extension (L, F)* of (L, F), the left hand side of (13) implies 

(vL*, vc i ) i c i  ~ (vF* ,  vc~)ie1. This isomorphism carries the smallest convex sub- 

group of vL* containing all values vci onto the smallest convex subgroup of vF* 

containing all values vci. But both subgroups are just A, and thus, this isomor- 

phism implies v A L * ~ v A F* . | 
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